Publications

(61.) The phase diagram of quantum chromodynamics in one dimension on a quantum computer, Anton T. Than, Yasar Y. Atas, Abhijit Chakraborty, Jinglei Zhang, Matthew T. Diaz, Kalea Wen, Xingxin Liu, Randy Lewis, Alaina M. Green, Christine A. Muschik, Norbert M. Linke,
preprint https://arxiv.org/abs/2501.00579 (2024).

60. Quantum Simulation With Trapped Ions , D. Luo and N. M. Linke, Oxford Research Encyclopedia of Physics (2024).

59. Let the ions sing, Norbert M. Linke, Nature Physics (2023).

58. Pairwise-parallel entangling gates on orthogonal modes in a trapped-ion chain, Yingyue Zhu, Alaina M. Green, Nhung H. Nguyen, C. Huerta Alderete, Elijah Mossman, Norbert M. Linke,
Adv. Quantum Technol. 2300056 (2023).

(57.) Probing The Unitarity of Quantum Evolution Through Periodic Driving, Alaina M. Green, Tanmoy Pandit, C. Huerta Alderete, Norbert M. Linke, Raam Uzdin,
preprint https://arxiv.org/abs/2212.10771 (2022).

56. Bespoke Pulse Design for Robust Rapid Two-Qubit Gates with Trapped Ions, Seyed Shakib Vedaie, Eduardo J. Páez, Nhung H. Nguyen, Norbert M. Linke, Barry C. Sanders,
Phys. Rev. Research 5, 023098 (2023).

(55.) Realizing two-qubit gates through mode engineering on a trapped-ion quantum computer, Ming Li, Nhung H. Nguyen, Alaina M. Green, Jason Amini, Norbert M. Linke, Yunseong Nam,
preprint https://arxiv.org/abs/2208.01584 (2022).

(54.) Para-particle oscillator simulations on a trapped ion quantum computer, C. Huerta Alderete, Alaina M. Green, Nhung H. Nguyen, Yingyue Zhu, Norbert M. Linke, B. M. Rodriguez-Lara,
preprint https://arxiv.org/abs/2207.02430 (2022).

(53.) Surviving The Barren Plateau in Variational Quantum Circuits with Bayesian Learning Initialization, Ali Rad, Alireza Seif, Norbert M. Linke, preprint https://arxiv.org/abs/2203.02464 (2022).

52. Multi-round QAOA and advanced mixers on a trapped-ion quantum computer, Yingyue Zhu, Zewen Zhang, Bhuvanesh Sundar, Alaina M. Green, C. Huerta Alderete, Nhung H. Nguyen, Kaden R. A. Hazzard, and Norbert M. Linke, Quantum Sci. Technol. 8 015007 (2022).

51. Digital Quantum Simulation of the Schwinger Model and Symmetry Protection with Trapped Ions, Nhung H. Nguyen, Minh C. Tran, Yingyue Zhu, Alaina M. Green, C. Huerta Alderete, Zohreh Davoudi, Norbert M. Linke, PRX Quantum 3, 020324 (2022).

50. Experimental measurement of out-of-time-ordered correlators at finite temperature, Alaina M. Green, A. Elben, C. Huerta Alderete, Lata Kh Joshi, Nhung H. Nguyen, Torsten V. Zache, Yingyue Zhu, Bhuvanesh Sundar, Norbert M. Linke, Phys. Rev. Lett. 128, 140601 (2022).

49. Quantum computational advantage attested by nonlocal games with the cyclic cluster state, Austin K. Daniel, Yinyue Zhu, Cinthia Huerta Alderete, Vikas Buchemmavari, Alaina M. Green, Nhung H. Nguyen, Tyler G. Thurtell, Andrew Zhao, Norbert M. Linke, Akimasa Miyake, preprint, Phys. Rev. Research 4, 033068 (2022).

(48.) Experimental realization of para-particle oscillators, Cinthia Huerta Alderete, Alaina M. Green, Nhung H. Nguyen, Yingyue Zhu, Blas M. Rodríguez-Lara, Norbert M. Linke,
preprint https://arxiv.org/abs/2108.05471 (2021).

47. Cross-Platform Comparison of Arbitrary Quantum Computations, Daiwei Zhu, Ze-Pei Cian, Crystal Noel, Andrew Risinger, Debopriyo Biswas, Laird Egan, Yingyue Zhu, Alaina M. Green, Cinthia Huerta Alderete, Nhung H. Nguyen, Qingfeng Wang, Andrii Maksymov, Yunseong Nam, Marko Cetina, Norbert M. Linke, Mohammad Hafezi, Christopher Monroe,
Nature Communications 13, 6620 (2022).

46. Bounds on the survival probability in periodically driven quantum systems, Tanmoy Pandit, Alaina M. Green, C. Huerta Alderete, Norbert M. Linke, Raam Uzdin, Quantum 6, 682 (2022).

45. Multiplexed quantum repeaters based on dual-species trapped-ion systems, Prajit Dhara, Norbert M. Linke, Edo Waks, Saikat Guha, Kaushik P. Seshadreesan, Phys. Rev. A 105, 022623 (2022),
Featured in Physics, Editor’s Suggestion.

44. Toward simulating quantum field theories with controlled phonon-ion dynamics: A hybrid analog-digital approach, Zohreh Davoudi, Norbert M. Linke, Guido Pagano, Phys. Rev. Research 3, 043072 (2021).

43. Programmable quantum simulations of spin systems with trapped ions, C. Monroe, W. C. Campbell, L.-M. Duan, Z.-X. Gong, A. V. Gorshkov, P. W. Hess, R. Islam, K. Kim, N. M. Linke, G. Pagano, P. Richerme, C. Senko, and N. Y. Yao, Rev. Mod. Phys. 93, 025001 (2021).

42. Demonstration of Shor encoding on a trapped-ion quantum computer, Nhung H. Nguyen, Muyuan Li, Alaina M. Green, Cinthia Huerta Alderete, Yingyue Zhu, Daiwei Zhu, Kenneth R. Brown, Norbert M. Linke, Phys. Rev. Applied 16, 024057 (2021).

41. Real-time quantum calculations of phase shifts using wave packet time delays, Erik Gustafson, Yingyue Zhu, Patrick Dreher, Norbert M. Linke, Yannick Meurice, Phys. Rev. D 104, 054507 (2021).

40. Many-body quantum teleportation via operator spreading in the traversable wormhole protocol, Thomas Schuster, Bryce Kobrin, Ping Gao, Iris Cong, Emil T. Khabiboulline, Norbert M. Linke, Mikhail D. Lukin, Christopher Monroe, Beni Yoshida, Norman Y. Yao, Phys. Rev. X 12, 031013 (2022).

39. Efficient, stabilized two-qubit gates on a trapped-ion quantum computer, Reinhold Blümel, Nikodem Grzesiak, Nhung H. Nguyen, Alaina M. Green, Ming Li, Andrii Maksymov, Norbert M. Linke, Yunseong Nam, Phys. Rev. Lett. 126, 220503 (2021).

38. Many-body Thermodynamics on Quantum Computers via Partition Function Zeros, A. Francis, D. Zhu, C. Huerta Alderete, S. Johri, X. Xiao, J. K. Freericks, C. Monroe, N. M. Linke, A. F. Kemper,
Science Advances vol. 7, no. 34, eabf2447 (2021).

37. Probing many-body localization on a noisy quantum computer, Daiwei Zhu, Sonika Johri, Nhung H. Nguyen, Cinthia Huerta Alderete, Kevin A. Landsman, Norbert M. Linke, Christopher Monroe, Anne Y. Matsuura, Phys. Rev. A 103, 032606 (2021).

36. Mit Ionen ist zu rechnen, Norbert M. Linke und Markus Müller,
Physik In Unserer Zeit, 51 (4), 168-175 (2020).

35. Architecting Noisy Intermediate-Scale Quantum Computers: A Real-System Study, Prakash Murali, Norbert M. Linke, Margaret Martonosi, Ali J. Abhari, Nhung H. Nguyen, Cinthia Huerta Alderete, Top Picks 2019 in Computer Architecture, IEEE Micro, 40 (3), 73-80 (2020).

34. Quantum walks and Dirac cellular automata on a programmable trapped-ion quantum computer, Cinthia Huerta Alderete, Shivani Singh, Nhung H. Nguyen, Daiwei Zhu, Radhakrishnan Balu, Christopher Monroe, C. M. Chandrashekar, Norbert M. Linke, Nature Communications 11, 3720 (2020).

33. Universal one-dimensional discrete-time quantum walks and their implementation on near-term quantum hardware, Shivani Singh, Cinthia Huerta Alderete, Radhakrishnan Balu, Christopher Monroe, Norbert M. Linke, C. M. Chandrashekar, Phys. Rev. A 104, 062401 (2021).

(32.) Dynamical mean field theory algorithm and experiment on quantum computers, I. Rungger, N. Fitzpatrick, H. Chen, C. Huerta Alderete, H. Apel, A. Cowtan, A. Patterson, D. Munoz Ramo, Y. Zhu, N. H. Nguyen, E. Grant, S. Chretien, L. Wossnig, N. M. Linke, R. Duncan, preprint arXiv:1910.04735 (2019).

31. Variational Generation of Thermofield Double States and Critical Ground States with a Quantum Computer, D. Zhu, S. Johri, N. M. Linke, K. A. Landsman, N. H. Nguyen, C. Huerta Alderete, A. Y. Matsuura, T. H. Hsieh, C. Monroe, Proc. Natl. Acad. Sci. 117 (41) 25402-25406 (2020), preprint arXiv:1906.02699 (2019).

(30.) Noise reduction using past causal cones in variational quantum algorithms, Omar Shehab, Isaac H. Kim, Nhung H. Nguyen, Kevin Landsman, Cinthia Huerta Alderete, Daiwei Zhu, C. Monroe, and Norbert M. Linke, preprint arXiv:1906.00476 (2019).

29. 2D Quantum Metamaterials – Proceedings of the 2018 NIST Workshop, edited by: W. P. Kirk, J. N. Randall, and J. H. G. Owen,
Chapter 10: “Trapped Ions” by N. M. Linke, World Scientific Publishing
e-book link (2019).

28. Full-Stack, Real-System Quantum Computer Studies: Architectural Comparisons and Design Insights, Prakash Murali, Norbert M. Linke, Margaret Martonosi, Ali J. Abhari, Nhung H. Nguyen, Cinthia Huerta Alderete, Proceedings of the 46th International Symposium on Computer Architecture ISCA 2019, 527-540 (2019).

27. Validating and certifying stabilizer states, A. Kalev, A. Kyrillidis, and N. M. Linke, Phys. Rev. A 99, 042337 (2019).

2015-2018 (UMD, Monroe group):

26. Toward convergence of effective field theory simulations on digital quantum computers, Omar Shehab, Kevin A. Landsman, Yunseong Nam, Daiwei Zhu, Norbert M. Linke, Matthew J. Keesan, Raphael C. Pooser, C. Monroe, Phys. Rev. A 100, 062319 (2019).

25. Training of Quantum Circuits on a Hybrid Quantum Computer, D. Zhu, N. M. Linke, M. Benedetti, K. A. Landsman, N. H. Nguyen, C. Huerta Alderete, A. Perdomo-Ortiz, N. Korda, A. Garfoot, C. Brecque, L. Egan, O. Perdomo, and C. Monroe, Science Advances 5, 10 (2019).

24. Two-qubit entangling gates within arbitrarily long chains of trapped ions, Kevin A. Landsman, Yukai Wu, Pak Hong Leung, Daiwei Zhu, Norbert M. Linke, Kenneth R. Brown, Luming Duan, C. Monroe, Phys. Rev. A. 100, 022332 (2019).

23. Parallel Entangling Operations on a Universal Ion Trap Quantum Computer, C. Figgatt, A. Ostrander, N. M. Linke, K. A Landsman, D. Zhu, D. Maslov, C. Monroe; Nature 572 368-372 (2019).

22. Verified Quantum Information Scrambling, K. A Landsman, C. Figgatt, T. Schuster, N. M. Linke, B. Yoshida, N. Y. Yao, C. Monroe; Nature 567, 61-65 (2019).

21. Measuring the Renyi entropy of a two-site Fermi-Hubbard model on a trapped ion quantum computer, N. M. Linke, S. Johri, C. Figgatt, K. A. Landsman, C. Monroe, Phys. Rev. A 98, 052334 (2018).

20. Machine Learning Assisted Readout of Trapped Ion Qubits, A. Seif, K. A. Landsman, N. M. Linke, C. Figgatt, C. Monroe, and M. Hafezi, J. Phys. B: At. Mol. Opt. Phys. 51, 174006 (2018).

19. Demonstration of a Bayesian Quantum Game on an Ion Trap Quantum Computer, N. Solmeyer, N. M. Linke, C. Figgatt, K. A. Landsman, R. Balu, G. Siopsis, C. Monroe, Quantum Sci. Tech. 3, 045002 (2018).

18. Observation of Hopping and Blockade of Bosons in a Trapped Ion Spin Chain, S. Debnath, N.M. Linke, S.-T. Wang, C. Figgatt, K. A. Landsman, L.-M. Duan, C. Monroe; Phys. Rev. Lett. 120, 073001 (2018), Editor’s Suggestion.

17. Robust two-qubit gates in a linear ion crystal using a frequency-modulated drive force, P.-H.Leung, K. A. Landsman, C. Figgatt, N. M. Linke, C. Monroe, K. R. Brown, Phys. Rev. Lett., 120, 020501 (2018).

16. Complete 3-qubit Grover search on a programmable quantum computer, C. Figgatt, D. Maslov, K. A. Landsman, N. M. Linke, S. Debnath, C. Monroe; Nature Communications 8, 1918 (2017).

15. Fault tolerant quantum error detection, N. M. Linke, M. Gutierrez, K. A. Landsman, C. Figgatt, S. Debnath, K. R. Brown, C. Monroe; Science Advances 3, 10 (2017).

14. Experimental comparison of two quantum computing architectures, N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A. Landsman, K. Wright, C. Monroe; Proc. Natl. Acad. Sci. 114, 13 (2017).

13. Demonstration of a small programmable quantum computer with atomic qubits, S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, C. Monroe; Nature 536, 63, cover story (2016).

2008-2014 (Oxford, Lucas/Steane group):

12. High-fidelity spatial addressing of Ca-43 qubits using near-field microwave control, D. P. L. Aude Craik, N. M. Linke, M. A. Sepiol, T. P. Harty, C. J. Ballance, D. N. Stacey, A. M. Steane, D. M. Lucas, D. T. C. Allcock; Phys. Rev. A 95, 022337 (2017).

11. High-fidelity quantum logic gates using trapped-ion hyperfine qubits, C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, D. M. Lucas; Phys. Rev. Lett. 117, 060504 (2016).

10. Hybrid quantum logic and a test of Bell’s inequality using two different atomic species, C. J. Ballance, V. M. Schäfer, J. P. Home, D. J. Szwer, S. C. Webster, D. T. C. Allcock, N. M. Linke, T. P. Harty, D. P. L. Aude Craik, D. N. Stacey, A. M. Steane, D. M. Lucas; Nature 528, 384 (2015).

9. High-fidelity preparation, gates, memory and readout of a trapped-ion quantum bit, T. P. Harty, D. T. C. Allcock, C. J. Ballance, L. Guidoni, H. A. Janacek, N. M. Linke, D. N. Stacey, D. M. Lucas; Phys. Rev. Lett. 113, 220501 (2014).

8. Injection locking of two frequency-doubled lasers with 3.2 GHz offset for driving Raman transitions with low photon scattering in 43Ca+, N. M. Linke, C.J. Ballance, D. M. Lucas; Opt. Lett. 38, 5087 (2013).

7. Microwave control electrodes for scalable, parallel, single-qubit operations in a surface-electrode ion trap, D. P. L. Aude Craik, N. M. Linke, T. P. Harty, C. J. Ballance, D. M. Lucas, A. M. Steane, D. T. C. Allcock; Appl. Phys. B 114, 3 (2013).

6. A microfabricated ion trap with integrated microwave circuitry, D. T. C. Allcock, T. P. Harty, C. J. Ballance, B. C. Keitch, N. M. Linke, D. N. Stacey, D. M. Lucas; Appl. Phys. Lett. 102, 044103(2013).

5. Background-free detection of trapped ions, N. M. Linke, D. T. C. Allcock, D. J. Szwer, C. J. Ballance, T. P. Harty, H. A. Janacek, D. N. Stacey, A. M. Steane and D. M. Lucas; Appl. Phys. B 107, 1175 (2012).

4. Heating rate and electrode charging measurements in a scalable, microfabricated, surface electrode ion trap, D. T. C. Allcock, T. P. Harty, H. A. Janacek, N. M. Linke, C. J.Ballance, A. M. Steane, D. M. Lucas, R. L. Jarecki Jr., S. D. Habermehl, M. G. Blain, D. Stick, D. L. Moehring; Appl. Phys. B 107, 913 (2012).

3. Implementation of a symmetric surface electrode ion trap with field compensation using a modulated Raman effect, D. T. C. Allcock, J. A. Sherman, D. N. Stacey, A. H. Burrell, M. J. Curtis, G. Imreh, N. M. Linke, D. J. Szwer, S. C. Webster, A. M. Steane, D. M. Lucas; New J. Phys. 12053026 (2010).

2007-2008 (Ulm, Schmidt-Kaler group):

2. Optimized focusing ion optics for an ultracold deterministic single ion source targeting nm resolution, R. Fickler, W. Schnitzler, N. M. Linke, F. Schmidt-Kaler, K. Singer; J. Mod. Opt. 56, 2061 (2009).

1. Deterministic Ultracold Ion Source targeting the Heisenberg Limit, W. Schnitzler, N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, and K. Singer; Phys. Rev. Lett. 102, 070501 (2009).